4.profile

教程 阿布都的都 ⋅ 于 2023-01-06 20:35:09 ⋅ 1152 阅读

1 如何找到你执行SQL的Profile文件

在impala中,如果你执行了一个SQL,该如何查看其内部的运行流程,该如何对现有SQL进行优化,这就需要你会查看profile文件。

file

找到你要查看的SQL

file

file

2 分析profile文件

示例SQL:

select * from xinniu.impala_parquet1 t1 inner join xinniu.impala_parquet1 t2 on  t1.col1=t2.col1
union
select * from xinniu.impala_parquet1 t1 inner join xinniu.impala_parquet1 t2 on  t1.col1=t2.col1;

下面从 概要部分、执行计划树、执行概要部分分析

2.1 概要部分

# 查询id:该ID唯一标识在Impala中运行过的SQL,这对于从Impala Daemon日志中用ID查询相关的信息很有用,只需搜索此查询ID,就可以了解SQL运行细节和相关的错误信息。
Query (id=a94622372f612871:2c2019b000000000)
  Summary
    Session ID: dc49b8ec4ffcd17c:c57aa777c4e1dbba
    # 告诉我们连接来自哪里。
    # BEESWAX:从impala-shell客户端运行
    # HIVESERVER2:从Hue运行
    Session Type: BEESWAX

    # 开始时间和结束时间, 可以查看运行时长
    # hue:运行几秒中,但运行时间会很长,原因是Hue会保持会话打开直到会话关闭或用户运行另一个查询,比正常显示的时间更长
    # impala-shell: 基本和运行时长一致
    Start Time: 2021-11-12 22:30:36.432669000
    End Time: 2021-11-12 22:30:37.682648000
    Query Type: QUERY
    Query State: FINISHED
    # OK表示查询成功执行完成。
    Query Status: OK
    # 该信息显示运行查询的Impala版本,如果你发现它与你安装的Impala版本不匹配,则说明未正确安装某些部分。
    Impala Version: impalad version 3.2.0-cdh6.3.2 RELEASE (build 1bb9836227301b839a32c6bc230e35439d5984ac)
    # 运行查询的用户信息
    User: hive@HAINIU.COM
    Connected User: hive@HAINIU.COM
    Delegated User: 
    Network Address: ::ffff:192.168.88.250:45204
    # 在哪个数据库上执行查询的
    Default Db: default
    # 查询sql,如果查看别人的运行问题,可看这个SQL
    Sql Statement: select * from xinniu.impala_parquet1 t1 inner join xinniu.impala_parquet1 t2 on  t1.col1=t2.col1
union
select * from xinniu.impala_parquet1 t1 inner join xinniu.impala_parquet1 t2 on  t1.col1=t2.col1
    # 执行查询的impalad节点,以便上对应节点查看日志
    Coordinator: worker-1:22000

    Query Options (set by configuration): CLIENT_IDENTIFIER=Impala Shell v3.2.0-cdh6.3.2 (1bb9836) built on Fri Nov  8 07:22:06 PST 2019
    Query Options (set by configuration and planner): MT_DOP=0,CLIENT_IDENTIFIER=Impala Shell v3.2.0-cdh6.3.2 (1bb9836) built on Fri Nov  8 07:22:06 PST 2019
    Plan: 

2.2 执行计划树

# 每个机器最大资源预留
Max Per-Host Resource Reservation: Memory=104.09MB Threads=8
# 每个机器资源预估
Per-Host Resource Estimates: Memory=2.44GB
# Impala在查询计划中给出了警告来提示用户需要在该表上执行COMPUTE STATS来消除这个警告信息。
WARNING: The following tables are missing relevant table and/or column statistics.
xinniu.impala_parquet1

# 分析的SQL
Analyzed query: SELECT * FROM xinniu.impala_parquet1 t1 INNER JOIN
xinniu.impala_parquet1 t2 ON t1.col1 = t2.col1 UNION SELECT * FROM
xinniu.impala_parquet1 t1 INNER JOIN xinniu.impala_parquet1 t2 ON t1.col1 =
t2.col1

# ----执行计划树----
# 查询计划(Query plan)是Impala profile中最重要的部分之一,我们需要知道如何读取它,
# 因为它告诉我们如何扫描(scan)表、交换数据(data exchange)和连接(join)以获得最终结果

# Fragment信息:一个主机,一个实例。
F06:PLAN FRAGMENT [UNPARTITIONED] hosts=1 instances=1
|  Per-Host Resources: mem-estimate=68.00KB mem-reservation=0B thread-reservation=1
PLAN-ROOT SINK
|  mem-estimate=0B mem-reservation=0B thread-reservation=0
|
12:EXCHANGE [UNPARTITIONED]
|  mem-estimate=68.00KB mem-reservation=0B thread-reservation=0
|  tuple-ids=4 row-size=64B cardinality=0
|  in pipelines: 11(GETNEXT)
|
F05:PLAN FRAGMENT [HASH(col1,col2,col3,col4,col1,col2,col3,col4)] hosts=1 instances=1
Per-Host Resources: mem-estimate=128.07MB mem-reservation=34.00MB thread-reservation=1
11:AGGREGATE [FINALIZE] # 计算聚合的最终结果
|  group by: col1, col2, col3, col4, col1, col2, col3, col4
|  mem-estimate=128.00MB mem-reservation=34.00MB spill-buffer=2.00MB thread-reservation=0
|  tuple-ids=4 row-size=64B cardinality=0
|  in pipelines: 11(GETNEXT), 01(OPEN), 04(OPEN)
|
10:EXCHANGE [HASH(col1,col2,col3,col4,col1,col2,col3,col4)]
|  mem-estimate=68.00KB mem-reservation=0B thread-reservation=0
|  tuple-ids=4 row-size=64B cardinality=0
|  in pipelines: 01(GETNEXT), 04(GETNEXT)
|  # Fragment信息:一个主机,一个实例。
|  # F04:片段ID可以用来在Profile的后面部分找到实际的片段统计信息,它可以告诉我们这个片段在运行时如何运行的详细信息
F04:PLAN FRAGMENT [RANDOM] hosts=1 instances=1
Per-Host Resources: mem-estimate=2.19GB mem-reservation=70.03MB thread-reservation=2 runtime-filters-memory=2.00MB
07:AGGREGATE [STREAMING] # 去重操作
|  group by: col1, col2, col3, col4, col1, col2, col3, col4
|  mem-estimate=128.00MB mem-reservation=34.00MB spill-buffer=2.00MB thread-reservation=0
|  tuple-ids=4 row-size=64B cardinality=0
|  in pipelines: 01(GETNEXT), 04(GETNEXT)
|
00:UNION  # union操作(不去重的)
|  mem-estimate=0B mem-reservation=0B thread-reservation=0
|  tuple-ids=4 row-size=64B cardinality=0
|  in pipelines: 01(GETNEXT), 04(GETNEXT)
|
|--06:HASH JOIN [INNER JOIN, BROADCAST]
|  |  hash predicates: t1.col1 = t2.col1
|  |  fk/pk conjuncts: assumed fk/pk
|  |  runtime filters: RF002[bloom] <- t2.col1
|  |  mem-estimate=2.00GB mem-reservation=34.00MB spill-buffer=2.00MB thread-reservation=0
|  |  tuple-ids=2,3 row-size=64B cardinality=unavailable
|  |  in pipelines: 04(GETNEXT), 05(OPEN)
|  |
|  |--09:EXCHANGE [BROADCAST]
|  |  |  mem-estimate=35.97KB mem-reservation=0B thread-reservation=0
|  |  |  tuple-ids=3 row-size=32B cardinality=unavailable
|  |  |  in pipelines: 05(GETNEXT)
|  |  |
|  |  F03:PLAN FRAGMENT [RANDOM] hosts=1 instances=1
|  |  Per-Host Resources: mem-estimate=64.00MB mem-reservation=32.00KB thread-reservation=2
|  |  05:SCAN HDFS [xinniu.impala_parquet1 t2, RANDOM]
|  |     partitions=1/1 files=1 size=1.06KB
|  |     stored statistics:
|  |       table: rows=unavailable size=unavailable
|  |       columns: unavailable
|  |     extrapolated-rows=disabled max-scan-range-rows=unavailable
|  |     mem-estimate=64.00MB mem-reservation=32.00KB thread-reservation=1
|  |     tuple-ids=3 row-size=32B cardinality=unavailable
|  |     in pipelines: 05(GETNEXT)
|  |
|  04:SCAN HDFS [xinniu.impala_parquet1 t1, RANDOM]
|     partitions=1/1 files=1 size=1.06KB
|     runtime filters: RF002[bloom] -> t1.col1
|     stored statistics:
|       table: rows=unavailable size=unavailable
|       columns: unavailable
|     extrapolated-rows=disabled max-scan-range-rows=unavailable
|     mem-estimate=64.00MB mem-reservation=32.00KB thread-reservation=1
|     tuple-ids=2 row-size=32B cardinality=unavailable
|     in pipelines: 04(GETNEXT)
|  # 执行 inner join 
03:HASH JOIN [INNER JOIN, BROADCAST]  
|  # join 条件
|  hash predicates: t1.col1 = t2.col1
|  fk/pk conjuncts: assumed fk/pk
|  # join条件字段的filter
|  runtime filters: RF000[bloom] <- t2.col1
|  mem-estimate=2.00GB mem-reservation=34.00MB spill-buffer=2.00MB thread-reservation=0
|  tuple-ids=0,1 row-size=64B cardinality=unavailable
|  in pipelines: 01(GETNEXT), 02(OPEN)
|
|  # EXCHANGE: 代表网络交换, BROADCAST: 代表将数据广播到其他计算节点
|--08:EXCHANGE [BROADCAST]
|  |  mem-estimate=35.97KB mem-reservation=0B thread-reservation=0
|  |  tuple-ids=1 row-size=32B cardinality=unavailable
|  |  in pipelines: 02(GETNEXT)
|  |
|  F01:PLAN FRAGMENT [RANDOM] hosts=1 instances=1
|  Per-Host Resources: mem-estimate=64.00MB mem-reservation=32.00KB thread-reservation=2
|  02:SCAN HDFS [xinniu.impala_parquet1 t2, RANDOM]
|     partitions=1/1 files=1 size=1.06KB
|     stored statistics:
|       table: rows=unavailable size=unavailable
|       columns: unavailable
|     extrapolated-rows=disabled max-scan-range-rows=unavailable
|     mem-estimate=64.00MB mem-reservation=32.00KB thread-reservation=1
|     tuple-ids=1 row-size=32B cardinality=unavailable
|     in pipelines: 02(GETNEXT)
|
| # 第一步通常从HDFS扫描(HDFS Scan)开始
01:SCAN HDFS [xinniu.impala_parquet1 t1, RANDOM]
   # 表中只有一个分区,Impala也读取一个分区。这并不一定意味着这个表是分区的,如果表没有分区,它也将显示为1/1
   # 表/分区下只有一个文件(files=1)
   # Impala读取的数据总大小为1.06KB
   partitions=1/1 files=1 size=1.06KB
   # join条件字段的filter
   runtime filters: RF000[bloom] -> t1.col1
   # 由于没有执行COMPUTE STATS统计信息,导致可统计的数据
   stored statistics:
     table: rows=unavailable size=unavailable
     columns: unavailable
   extrapolated-rows=disabled max-scan-range-rows=unavailable
   # mem-estimate: planner分析这个任务需要多少内存
   # mem-reservation:planner分析这个任务需要预留多少内存
   mem-estimate=64.00MB mem-reservation=32.00KB thread-reservation=1
   tuple-ids=0 row-size=32B cardinality=unavailable
   in pipelines: 01(GETNEXT)

2.3 执行概要部分

# ---执行概要部分---
    ExecSummary: 
    #Hosts:一共用了多少个节点(impalad)
    #Avg Time:平均时长,用于评估所有节点平均耗时
    #Max Time:最大时长,用于评估是否有某个节点执行任务时长过长
    #Rows:实际查询过程中查询了多少行,查出来多少就代表实际是多少,行数的单位为k或者m,比如:1.2k=1200 1.2m=12000000
    #Est. #Rows: 执行计划给出的评估行数,如果这里给出的是-1,代表没有表的统计信息
    #Peak Mem: 执行过程中实际消耗的内存
    #Est. Peak Mem: 执行计划判断需要多少内存
Operator                    #Hosts   Avg Time   Max Time  #Rows  Est. #Rows   Peak Mem  Est. Peak Mem  Detail                                        
-----------------------------------------------------------------------------------------------------------------------------------------------------
F06:ROOT                         1  211.843us  211.843us                             0              0                                                
12:EXCHANGE                      1  130.929us  130.929us     12           0   80.00 KB       68.00 KB  UNPARTITIONED                                 
F05:EXCHANGE SENDER              1  828.719us  828.719us                       1.91 KB              0                                                
11:AGGREGATE                     1    9.295ms    9.295ms     12           0   34.08 MB      128.00 MB  FINALIZE                                      
10:EXCHANGE                      1   87.501us   87.501us     12           0   80.00 KB       68.00 KB  HASH(col1,col2,col3,col4,col1,col2,col3,col4) 
F04:EXCHANGE SENDER              1  673.441us  673.441us                       1.91 KB              0                                                
07:AGGREGATE                     1    3.000ms    3.000ms     12           0   34.28 MB      128.00 MB  STREAMING                                     
00:UNION                         1    0.000ns    0.000ns     24           0   54.00 KB              0                                                
|--06:HASH JOIN                  1   15.679ms   15.679ms     12          -1   34.06 MB        2.00 GB  INNER JOIN, BROADCAST                          
|  |--09:EXCHANGE                1   19.297us   19.297us     12          -1   16.00 KB       35.97 KB  BROADCAST                                     
|  |  F03:EXCHANGE SENDER        1  857.362us  857.362us                       3.76 KB              0                                                
|  |  05:SCAN HDFS               1    5.270ms    5.270ms     12          -1  106.00 KB       64.00 MB  xinniu.impala_parquet1 t2                     
|  04:SCAN HDFS                  1    4.398ms    4.398ms     12          -1  106.00 KB       64.00 MB  xinniu.impala_parquet1 t1                     
03:HASH JOIN                     1   10.168ms   10.168ms     12          -1   34.06 MB        2.00 GB  INNER JOIN, BROADCAST                         
     # 代表网络交换
|--08:EXCHANGE                   1   29.293us   29.293us     12          -1   16.00 KB       35.97 KB  BROADCAST                                    
|    # 代表网络交换(序列化)
|  F01:EXCHANGE SENDER           1  113.875us  113.875us                       3.76 KB              0                                                
|  02:SCAN HDFS                  1    5.587ms    5.587ms     12          -1  106.00 KB       64.00 MB  xinniu.impala_parquet1 t2                     
01:SCAN HDFS                     1    3.913ms    3.913ms     12          -1  106.00 KB       64.00 MB  xinniu.impala_parquet1 t1

3 谓词下推

谓词下推,就是在将过滤条件下推到离数据源更近的地方,最好就是在table_scan时就能过滤掉不需要的数据。

谓词下推可用于join的优化。

3.1 inner join

先看个SQL

# 是个inner join, sql表达:先join,拿到join的结果后在where筛选
select 
* 
from
(
select * from xinniu.impala_t1
) t1
join
(
select * from xinniu.impala_t1
) t2
on 
t1.col1=t2.col1
where 
t1.col2=true and t2.col4='ssd';

但对于innerjoin,左表右表都要满足条件,所以优化器将 inner join的条件下推

# 优化后的SQL
select 
* 
from
(
select * from xinniu.impala_t1 where col2=true
) t1
join
(
select * from xinniu.impala_t1 where col4='ssd'
) t2
on 
t1.col1=t2.col1;

file

3.2 leftjoin

3.2.1 优化类型1

# t1:select * from xinniu.impala_t1 where t1.col2=true 结果集大于
# t2: select * from xinniu.impala_t1 where t2.col4='ssd' 
# 优化成leftjoin, select * from t1 left join t2 on t1.col1=t2.col1 where t2.col4='ssd' 
explain select 
* 
from
(
select * from xinniu.impala_t1
) t1
left join
(
select * from xinniu.impala_t1
) t2
on 
t1.col1=t2.col1
where 
t1.col2=true and t2.col4='ssd';

内部执行计划树:

02:HASH JOIN [LEFT OUTER JOIN, BROADCAST]
# 优化成leftjoin, select * from t1 left join t2 on t1.col1=t2.col1 where t2.col4='ssd' 
|  hash predicates: xinniu.impala_t1.col1 = xinniu.impala_t1.col1
|  fk/pk conjuncts: xinniu.impala_t1.col1 = xinniu.impala_t1.col1
|  other predicates: xinniu.impala_t1.col4 = 'ssd'
|  mem-estimate=1.94MB mem-reservation=1.94MB spill-buffer=64.00KB thread-reservation=0
|  tuple-ids=0,2N row-size=72B cardinality=6
|  in pipelines: 00(GETNEXT), 01(OPEN)
|
|--03:EXCHANGE [BROADCAST]
|  |  mem-estimate=16.00KB mem-reservation=0B thread-reservation=0
|  |  tuple-ids=2 row-size=36B cardinality=1
|  |  in pipelines: 01(GETNEXT)
|  |
|  F01:PLAN FRAGMENT [RANDOM] hosts=1 instances=1
|  Per-Host Resources: mem-estimate=32.00MB mem-reservation=8.00KB thread-reservation=2
|  01:SCAN HDFS [xinniu.impala_t1, RANDOM]
|     partitions=1/1 files=1 size=378B
|     predicates: xinniu.impala_t1.col4 = 'ssd' #【where条件下推到 存储端】
|     stored statistics:
|       table: rows=12 size=378B
|       columns: all
|     extrapolated-rows=disabled max-scan-range-rows=12
|     mem-estimate=32.00MB mem-reservation=8.00KB thread-reservation=1
|     tuple-ids=2 row-size=36B cardinality=1
|     in pipelines: 01(GETNEXT)
|
00:SCAN HDFS [xinniu.impala_t1, RANDOM]
   partitions=1/1 files=1 size=378B
   predicates: xinniu.impala_t1.col2 = TRUE #【where条件下推到 存储端】
   stored statistics:
     table: rows=12 size=378B
     columns: all
   extrapolated-rows=disabled max-scan-range-rows=12
   mem-estimate=32.00MB mem-reservation=8.00KB thread-reservation=1
   tuple-ids=0 row-size=36B cardinality=6
   in pipelines: 00(GETNEXT)

3.2.2 优化类型2

# 左数据集t1: select * from xinniu.impala_t1 where col2=true 结果集大于
# 右数据集t2: select * from xinniu.impala_t1 where col4='ssd' 
# 优化成rightjoin, select * from t1 right join t2 on t1.col1=t2.col1 and t1.col2=true
select 
* 
from
(
select * from xinniu.impala_t1
) t1
left join
(
select * from xinniu.impala_t1
) t2
on 
t1.col1=t2.col1
where 
t1.col4='ssd' and t2.col2=true;

内部执行计划树:

F02:PLAN FRAGMENT [HASH(xinniu.impala_t1.col1)] hosts=1 instances=1
Per-Host Resources: mem-estimate=2.97MB mem-reservation=2.94MB thread-reservation=1 runtime-filters-memory=1.00MB
# 优化成rightjoin, select * from t1 right join t2 on t1.col1=t2.col1 and t1.col2=true
02:HASH JOIN [RIGHT OUTER JOIN, PARTITIONED]
|  hash predicates: xinniu.impala_t1.col1 = xinniu.impala_t1.col1
|  fk/pk conjuncts: xinniu.impala_t1.col1 = xinniu.impala_t1.col1
|  other predicates: xinniu.impala_t1.col2 = TRUE
|  runtime filters: RF000[bloom] <- xinniu.impala_t1.col1
|  mem-estimate=1.94MB mem-reservation=1.94MB spill-buffer=64.00KB thread-reservation=0
|  tuple-ids=2N,0 row-size=72B cardinality=1
|  in pipelines: 01(GETNEXT), 00(OPEN)
|
|--04:EXCHANGE [HASH(xinniu.impala_t1.col1)]
|  |  mem-estimate=16.00KB mem-reservation=0B thread-reservation=0
|  |  tuple-ids=0 row-size=36B cardinality=1
|  |  in pipelines: 00(GETNEXT)
|  |
|  F01:PLAN FRAGMENT [RANDOM] hosts=1 instances=1
|  Per-Host Resources: mem-estimate=32.00MB mem-reservation=8.00KB thread-reservation=2
|  00:SCAN HDFS [xinniu.impala_t1, RANDOM]
|     partitions=1/1 files=1 size=378B
|     predicates: xinniu.impala_t1.col4 = 'ssd' #【where条件下推到 存储端】
|     stored statistics:
|       table: rows=12 size=378B
|       columns: all
|     extrapolated-rows=disabled max-scan-range-rows=12
|     mem-estimate=32.00MB mem-reservation=8.00KB thread-reservation=1
|     tuple-ids=0 row-size=36B cardinality=1
|     in pipelines: 00(GETNEXT)
|
03:EXCHANGE [HASH(xinniu.impala_t1.col1)]
|  mem-estimate=16.00KB mem-reservation=0B thread-reservation=0
|  tuple-ids=2 row-size=36B cardinality=6
|  in pipelines: 01(GETNEXT)
|
F00:PLAN FRAGMENT [RANDOM] hosts=1 instances=1
Per-Host Resources: mem-estimate=33.00MB mem-reservation=1.01MB thread-reservation=2 runtime-filters-memory=1.00MB
01:SCAN HDFS [xinniu.impala_t1, RANDOM]
   partitions=1/1 files=1 size=378B
   predicates: xinniu.impala_t1.col2 = TRUE #【where条件下推到 存储端】
   runtime filters: RF000[bloom] -> xinniu.impala_t1.col1
   stored statistics:
     table: rows=12 size=378B
     columns: all
   extrapolated-rows=disabled max-scan-range-rows=12
   mem-estimate=32.00MB mem-reservation=8.00KB thread-reservation=1
   tuple-ids=2 row-size=36B cardinality=6
   in pipelines: 01(GETNEXT)
版权声明:原创作品,允许转载,转载时务必以超链接的形式表明出处和作者信息。否则将追究法律责任。来自海汼部落-阿布都的都,http://hainiubl.com/topics/76075
成为第一个点赞的人吧 :bowtie:
回复数量: 0
    暂无评论~~
    • 请注意单词拼写,以及中英文排版,参考此页
    • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`, 更多语法请见这里 Markdown 语法
    • 支持表情,可用Emoji的自动补全, 在输入的时候只需要 ":" 就可以自动提示了 :metal: :point_right: 表情列表 :star: :sparkles:
    • 上传图片, 支持拖拽和剪切板黏贴上传, 格式限制 - jpg, png, gif,教程
    • 发布框支持本地存储功能,会在内容变更时保存,「提交」按钮点击时清空
    Ctrl+Enter