04 hive 的 select、union、join、grouping sets

教程 薪牛 ⋅ 于 2023-01-17 23:29:43 ⋅ 1708 阅读

1 HIVE SELECT 语法

SELECT [ALL | DISTINCT] select_expr, select_expr, ...
  FROM table_reference
  [WHERE where_condition]
  [GROUP BY col_list]
  [ORDER BY col_list]
  [CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT BY col_list] ]
 [LIMIT number]

基于MapReduce引擎

Map阶段:
    1.执行from加载,进行表的查找与加载
    2.执行where过滤,进行条件过滤与筛选
    3.执行select查询:进行输出项的筛选
    4.执行group by分组:描述了分组后需要计算的函数
    5.map端文件合并:map端本地溢出写文件的合并操作,每个map最终形成一个临时文件。
                   然后按列映射到对应的Reduce阶段:
Reduce阶段:
    1.group by:对map端发送过来的数据进行分组并进行计算。
    2.select:最后过滤列用于输出结果
    3.limit排序后进行结果输出到HDFS文件

注意,以上顺序不是绝对的,会根据语句的不同,有所调整。

可以通过执行计划查看大概顺序。

explain sql语句

map端第一个操作肯定是加载表,所以就是 TableScan 表扫描操作,常见的属性:

​ alias: 表名称

​ Statistics: 表统计信息,包含表中数据条数,数据大小等

Select Operator: 选取操作,常见的属性 :

​ expressions:需要的字段名称及字段类型

​ outputColumnNames:输出的列名称

​ Statistics:表统计信息,包含表中数据条数,数据大小等

Group By Operator:分组聚合操作,常见的属性:

​ aggregations:显示聚合函数信息

​ mode:聚合模式,值有 hash:随机聚合,就是hash partition;partial:局部聚合;final:最终聚合

​ keys:分组的字段,如果没有分组,则没有此字段

​ outputColumnNames:聚合之后输出列名

​ Statistics: 表统计信息,包含分组聚合之后的数据条数,数据大小等

Reduce Output Operator:输出到reduce操作,常见属性:

​ sort order:值为空 不排序;值为 + 正序排序,值为 - 倒序排序;值为 +- 排序的列为两列,第一列为正序,第二列为倒序

​ Filter Operator:过滤操作,常见的属性:

​ predicate:过滤条件,如sql语句中的where id>=2,则此处显示(id >= 2)

Map Join Operator:join 操作,常见的属性:

​ condition map:join方式 ,如Inner Join 0 to 1

​ keys: join 的条件字段

​ outputColumnNames: join 完成之后输出的字段

​ Statistics: join 完成之后生成的数据条数,大小等

File Output Operator:文件输出操作,常见的属性

​ compressed:是否压缩

​ table:表的信息,包含输入输出文件格式化方式,序列化方式等

Fetch Operator 客户端获取数据操作,常见的属性:

​ limit,值为 -1 表示不限制条数,其他值为限制的条数

explain select count(*) from user_install_status_limit group by country;

file

file

file

2 Hive Join

​ hive只支持等连接,外连接。hive不支持非相等的join条件(通过其他方式实现,如left outer join),因为它很难在map/reduce job实现这样的条件。

​ hive可以join两个以上的表。

​ 如果两个以上join,join的字段都一样,类型也一样,那就只生成一个mapreduce任务。

2.1 两表join

建表导入数据

-- 创建表test_a
CREATE TABLE test_a(
id int,
name string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
-- 创建表test_b
CREATE TABLE test_b(
id int,
name string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
--创建表test_c
CREATE TABLE test_c(
id int,
name string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
--分别导入数据到三个表中
--test_a
1   a1
2   a2
4   a4
--test_b
1   b1
3   b3
4   b4
--test_c
1   c1
4   c4
5   c5

2.1.1 等值连接:inner join

file

-- 关闭mapjon
set hive.auto.convert.join=false;
set hive.ignore.mapjoin.hint=false;
select * from test_a a inner join test_b b on a.id=b.id;
1       a1      1       b1
4       a4      4       b4

2.1.2 外连接:left join 、right join

普通left Join

file

set hive.auto.convert.join=false;
set hive.ignore.mapjoin.hint=false;
select * from 
test_a a left join test_b b on a.id=b.id;
1   a1   1     b1
2   a2   null  null
4   a4   4     b4

普通right Join

file

--right join
set hive.auto.convert.join=false;
set hive.ignore.mapjoin.hint=false;
select a.*,b.* from test_a a 
right join test_b b 
on a.id=b.id;
1   a1      1   b1
null null   3   b3
4   a4      4   b4

2.1.3 实现非等值连接

查询test_a有,test_b没有,用 left join + is null

file

查询test_a没有,test_b有,用 right join + is null

file

--在得到join结果后,再根据where条件筛选
set hive.auto.convert.join=false;
set hive.ignore.mapjoin.hint=false;
select a.*,b.* from test_a a 
left join test_b b 
on a.id=b.id 
where b.id is null;
2   a2   null  null
-- 错误例子
select a.*,b.* from test_a a 
left join test_b b 
on a.id=b.id and b.id is null;
1       a1      NULL    NULL
2       a2      NULL    NULL
4       a4      NULL    NULL

2.2 多表join

1)三表inner join

如果join的字段相同,只生成一个任务

测试:

先关闭map端的join,再执行

测试join字段相同,只生成一个任务

-- 关闭mapjon
set hive.auto.convert.join=false;
set hive.ignore.mapjoin.hint=false;
select * from test_a a 
inner join test_b b on a.id=b.id 
inner join test_c c on a.id=c.id;

file

-------------------------------------

join字段不同,不一定生成一个任务

-- 关闭mapjon
set hive.auto.convert.join=false;
set hive.ignore.mapjoin.hint=false;
select * from test_a a 
inner join test_b b on a.id=b.id 
inner join test_c c on a.name=c.name; 

select * from test_a a
inner join test_b b on a.id=b.id
inner join test_c c on a.name=c.name;

2)计算新增用户(非等值连接的应用)

file

CREATE TABLE user_ttt(
aid STRING
)
PARTITIONED BY (dt STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
alter table user_ttt add IF NOT EXISTS partition(dt='20141117') location '20141117';
alter table user_ttt add IF NOT EXISTS partition(dt='20141218') location '20141218';
select aid from user_ttt where dt='20141117' group by aid
aid1
aid2
aid3
select aid from user_ttt where dt='20141218' group by aid
aid1
aid2
aid4
aid5
select count(*) from 
(select aid from user_ttt where dt='20141117' group by aid) t1
right join 
(select aid from user_ttt where dt='20141218' group by aid) t2
on t1.aid = t2.aid where t1.aid is null;
aid1    aid1
aid2    aid2
null    aid4
null    aid5

3)计算每个国家记录数的百分比

-- 统计所有记录数
select count(*) from user_install_status_limit;
100
-- 统计每个国家的记录数
select country, count(*) from user_install_status_limit group by country;
CN  50
US  20
RU  30
CN  100 50  50%
US  100 20  20%
RU  100 30  30%
-- 统计每个国家占总记录数的占比
select t1.total_num, t2.country, t2.num, concat(round(t2.num/t1.total_num * 100, 2),'%') from
(select count(*) as total_num, 'link' as link from user_install_status_limit) t1 
inner join 
(select country, count(*) as num, 'link' as link  from user_install_status_limit group by country) t2 
on t1.link=t2.link;
hive (hainiu)> select concat("aa","bb");
--round,默认取整,如果想精确,那就在后面加精确几位小数
--四舍五入取整
select round(5/3);
--精确6位小数
select round(5/3,6);

file

2.3 要避免的查询操作

--笛卡尔积的SQL
select * from test_a 
inner join test_b;
set hive.mapred.mode=strict;

设置这个参数,可以限制以下情况:

1)限制执行可能形成笛卡尔积的SQL;

2)partition表使用时不加分区;

3)order by全局排序的时候不加limit的情况;

file

partition表使用时不加分区

order by全局排序的时候不加limit的情况

file

取消限制

set hive.mapred.mode=nonstrict;

file

2.4 full outer join

包括两个表的join结果,(左边有,右边NULL union 右边有,左边NULL)

其结果等于left join union right join

file

1)做test_a 与 test_b 的full outer join

select a.*,b.* from test_a a
full outer join
test_b b
on a.id=b.id;

2.5 union的使用

union 是把两个表连接在一起,然后去重。

用 left join union right join 实现 full outer join

比如:

select a.id,a.name,b.id,b.name from test_a a left join test_b b on a.id=b.id
union
select a.id,a.name,b.id,b.name from test_a a right join test_b b on a.id=b.id;

为什么呢?

file

解决方案:

当带有union 的时候, 多个结果集join,需要把字段写清楚,否则union 的时候,得到的数据超乎你的想象。

select a.id as aid, a.name as aname, b.id as bid, b.name as bname from test_a a left join test_b b on a.id = b.id
union
select a.id as aid, a.name as aname, b.id as bid, b.name as bname from test_a a right join test_b b on a.id = b.id;

结果:

NULL    NULL    3       b3
1       a1      1       b1
2       a2      NULL    NULL
4       a4      4       b4

file

2.6 map端的join

file

制作字典文件country_dict.dat

http://www.jctrans.com/tool/gjym.htm

--创建表
create table country_dict(
code string,
name string,
region string
)ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
--加载数据
LOAD DATA LOCAL INPATH '/home/hadoop/country.dict' OVERWRITE INTO TABLE country_dict;

file

类似于mapreduce的mapjoin,在map端join,无reduce。

小表放内存,与大表的数据在map端进行join。


-- 将小表刷入内存中,默认是true 
set hive.auto.convert.join=true;
set hive.ignore.mapjoin.hint=true; 
-- 刷入内存表的大小(字节),根据自己的数据集加大
set hive.mapjoin.smalltable.filesize=2500000; 
--设置太大也不会校验,所以要根据实际情况来设置
set hive.mapjoin.smalltable.filesize=2500000000000000;
--大表join 小表
select * from hainiu.user_install_status_other u
inner join country_dict c
on u.country=c.code
where u.dt='20141228'
limit 10;

file

不开启mapjoin 设置:

set hive.auto.convert.join=false;
set hive.ignore.mapjoin.hint=false;

file

3 GROUP BY

已知student_grouping表

--创建student_grouping表
CREATE TABLE student_grouping(
id int,
name string,
age int,
sex string 
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
--给表导入数据
1   name1   12  boy
2   name2   12  boy
3   name3   13  girl
4   name4   13  boy
5   name5   14  boy
6   name6   14  boy
7   name7   15  girl
8   name8   15  girl

写统计SQL

1)查询总记录数;

2)按照年龄分组,统计记录数;

3)按照性别分组,统计记录数;

4)按照年龄、性别分组,统计记录数;

--写统计SQL
--1)查询总记录数;
select count(*) from student_grouping;
--2)按照年龄分组,统计记录数;
select age, count(*) from student_grouping group by age;
--3)按照性别分组,统计记录数;
select sex, count(*) from student_grouping group by sex;
--4)按照年龄、性别分组,统计记录数;
select age, sex, count(*) from student_grouping group by age, sex;
-- 需求, 一个SQL查询出上面4种查询结果
--在同一个sql中的不同的job是否可以同时运行,默认为false
set hive.exec.parallel=true;
--增加同一个sql允许并行任务的最大线程数
select null as age, null as sex, count(*) as num from student_grouping
union 
select age, null as sex, count(*) as num from student_grouping group by age 
union 
select null as age, sex, count(*) as num from student_grouping group by sex 
union 
select age, sex, count(*) as num from student_grouping group by age, sex;

NULL    NULL    8
NULL    boy     5
NULL    girl    3
12      NULL    2
12      boy     2
13      NULL    2
13      boy     1
13      girl    1
14      NULL    2
14      boy     2
15      NULL    2
15      girl    2
-- 用 grouping sets 优化后的
select age, sex, count(*) as num from student_grouping group by age, sex 
grouping sets((),age, sex, (age, sex));
NULL    NULL    8
NULL    boy     5
NULL    girl    3
12      NULL    2
12      boy     2
13      NULL    2
13      boy     1
13      girl    1
14      NULL    2
14      boy     2
15      NULL    2
15      girl    2
-- 将查询的多个维度的数据导入到hive表里(模拟MySQL)
create table student_count as 
select age, sex, count(*) as num from student_grouping group by age, sex 
grouping sets((),age, sex, (age, sex));
-- 模拟MySQL出指标
-- 统计总记录数;
select * from student_count where age is null and sex is null;
--统计每个年龄记录数;
select * from student_count where age is not null and sex is null;
--统计性别记录数;
select * from student_count where age is null and sex is not null;
--统计年龄、性别组合的记录数;
select * from student_count where age is not null and sex is not null;

file

3.1 GROUPING SETS使用

grouping sets是一种将多个group by 逻辑写在一个sql语句中的便利写法。

--GROUP BY a, b GROUPING SETS ((a,b))
SELECT a, b, SUM(c) FROM tab1 GROUP BY a, b GROUPING SETS ((a,b))
等于
SELECT a, b, SUM(c) FROM tab1 GROUP BY a, b

--GROUP BY a, b GROUPING SETS ((a,b), a)
SELECT a, b, SUM(c) FROM tab1 GROUP BY a, b GROUPING SETS ((a,b), a)
等于
SELECT a, b, SUM(c) FROM tab1 GROUP BY a, b 
UNION ALL
SELECT a, null, SUM(c) FROM tab1 GROUP BY a

--GROUP BY a, b GROUPING SETS (a,b)
SELECT a,b, SUM(c) FROM tab1 GROUP BY a, b GROUPING SETS (a,b)
等于
SELECT a, null, SUM(c) FROM tab1 GROUP BY a 
UNION ALL
SELECT null, b, SUM(c) FROM tab1 GROUP BY b

--GROUP BY a, b GROUPING SETS ((a, b), a, b, ())
SELECT a, b, SUM(c) FROM tab1 GROUP BY a, b GROUPING SETS ((a, b), a, b, ())
等于
SELECT a, b, SUM(c) FROM tab1 GROUP BY a, b 
UNION ALL
SELECT a, null, SUM(c) FROM tab1 GROUP BY a
UNION ALL
SELECT null, b, SUM(c) FROM tab1 GROUP BY b 
UNION ALL
SELECT null, null, SUM(c) FROM tab1

常用于计算各种组合的报表数据。

给null 赋个默认值

select coalesce(age, 'ALL'), coalesce(sex, 'ALL'), count(*) as num from student_grouping group by age, sex 
grouping sets((),age, sex, (age, sex));
ALL     ALL     8
ALL     boy     5
ALL     girl    3
12      ALL     2
12      boy     2
13      ALL     2
13      boy     1
13      girl    1
14      ALL     2
14      boy     2
15      ALL     2
15      girl    2

3.2 with cube是group by中所有key的组合

select 
coalesce(age,'ALL'), 
if(sex is null, 'ALL', sex),
count(*) 
from student_grouping group by age, sex 
grouping sets((), age, sex, (age,sex));
-- 等效
select 
coalesce(age,'ALL'), 
if(sex is null, 'ALL', sex),
count(*) 
from student_grouping group by age, sex with cube;

group by a,b,c with cube

等效

group by a,b,c grouping sets((a,b,c), (a,b), (a,c), (b,c), a, b, c, ())

3.3 with rollup是按右侧递减的顺序组合

-- GROUP BY age, sex with rollup 等效于  GROUP BY age, sex GROUPING SETS ( (age,sex),age,() )
-- 相当于按右侧递减的顺序group by
SELECT if(age is not null, age, 'ALL'), 
case when sex is not null then sex
else 'ALL'
end as age,
count(id) FROM student_grouping GROUP BY age, sex
with rollup;
--等于
SELECT if(age is not null, age, 'ALL'), 
case when sex is not null then sex
else 'ALL'
end as age,
count(id) FROM student_grouping GROUP BY age, sex
GROUPING SETS ( (age,sex),age,() );

例如:group by a,b,c with rollup

group by a,b,c grouping sets((a,b,c), (a,b), (a), ())

版权声明:原创作品,允许转载,转载时务必以超链接的形式表明出处和作者信息。否则将追究法律责任。来自海汼部落-薪牛,http://hainiubl.com/topics/76160
成为第一个点赞的人吧 :bowtie:
回复数量: 0
    暂无评论~~
    • 请注意单词拼写,以及中英文排版,参考此页
    • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`, 更多语法请见这里 Markdown 语法
    • 支持表情,可用Emoji的自动补全, 在输入的时候只需要 ":" 就可以自动提示了 :metal: :point_right: 表情列表 :star: :sparkles:
    • 上传图片, 支持拖拽和剪切板黏贴上传, 格式限制 - jpg, png, gif,教程
    • 发布框支持本地存储功能,会在内容变更时保存,「提交」按钮点击时清空
    Ctrl+Enter