最简单高效的 JSON 转 CSV

分享 leeston9 ⋅ 于 2021-08-14 01:10:19 ⋅ 最后回复由 leeston9 2021-08-17 22:31:31 ⋅ 2261 阅读

json 转csv 可解放大量的ETL工作,但带数组的json需要特别处理,我使用的亚马逊redshift时已经解决了基本所有的json数据类型预处理,我是通过通用配置表配合json预处理框架实现的.这里不多介绍,只讲一下如果将一堆json数据转为csv数据,如下是只需给定json的jsonpath结构,即可读入json 流出 csv
测试使用的是最多143个key的json数据,数据大小约13540行,jsonpath如下

{
    "jsonpaths": [
    "$.external_date",
    "$.external_time",
    "$._id",
    "$.uid",
    "$.nickname",
    "$.box_id",
    "$.platform",
    "$.coin",
    "$.award.realCoin",
    "$.award.realIosCoin",
    "$.award.id",
    "$.award.coin",
    "$.award.iosCoin",
    "$.award.price",
    "$.award.iosPrice",
    "$.award.displayPrice",
    "$.award.iosDisplayPrice",
    "$.award.iosPayId",
    "$.award.hide",
    "$.award.iosHide",
    "$.award_items_1.num",
    "$.award_items_1.id",
    "$.award_items_1.type",
    "$.award_items_1.unit",
    "$.award_items_1.coin",
    "$.award_items_1.title",
    "$.award_items_2.num",
    "$.award_items_2.id",
    "$.award_items_2.type",
    "$.award_items_2.unit",
    "$.award_items_2.coin",
    "$.award_items_2.title",
    "$.award_items_3.num",
    "$.award_items_3.id",
    "$.award_items_3.type",
    "$.award_items_3.unit",
    "$.award_items_3.coin",
    "$.award_items_3.title",
    "$.award_items_4.num",
    "$.award_items_4.id",
    "$.award_items_4.type",
    "$.award_items_4.unit",
    "$.award_items_4.coin",
    "$.award_items_4.title",
    "$.award_items_5.num",
    "$.award_items_5.id",
    "$.award_items_5.type",
    "$.award_items_5.unit",
    "$.award_items_5.coin",
    "$.award_items_5.title",
    "$.award_items_6.num",
    "$.award_items_6.id",
    "$.award_items_6.type",
    "$.award_items_6.unit",
    "$.award_items_6.coin",
    "$.award_items_6.title",
    "$.award_items_7.num",
    "$.award_items_7.id",
    "$.award_items_7.type",
    "$.award_items_7.unit",
    "$.award_items_7.coin",
    "$.award_items_7.title",
    "$.award_items_8.num",
    "$.award_items_8.id",
    "$.award_items_8.type",
    "$.award_items_8.unit",
    "$.award_items_8.coin",
    "$.award_items_8.title",
    "$.award_items_9.num",
    "$.award_items_9.id",
    "$.award_items_9.type",
    "$.award_items_9.unit",
    "$.award_items_9.coin",
    "$.award_items_9.title",
    "$.award_items_10.num",
    "$.award_items_10.id",
    "$.award_items_10.type",
    "$.award_items_10.unit",
    "$.award_items_10.coin",
    "$.award_items_10.title",
    "$.award_items_11.num",
    "$.award_items_11.id",
    "$.award_items_11.type",
    "$.award_items_11.unit",
    "$.award_items_11.coin",
    "$.award_items_11.title",
    "$.award_items_12.num",
    "$.award_items_12.id",
    "$.award_items_12.type",
    "$.award_items_12.unit",
    "$.award_items_12.coin",
    "$.award_items_12.title",
    "$.award_items_13.num",
    "$.award_items_13.id",
    "$.award_items_13.type",
    "$.award_items_13.unit",
    "$.award_items_13.coin",
    "$.award_items_13.title",
    "$.award_items_14.num",
    "$.award_items_14.id",
    "$.award_items_14.type",
    "$.award_items_14.unit",
    "$.award_items_14.coin",
    "$.award_items_14.title",
    "$.award_items_15.num",
    "$.award_items_15.id",
    "$.award_items_15.type",
    "$.award_items_15.unit",
    "$.award_items_15.coin",
    "$.award_items_15.title",
    "$.award_items_16.num",
    "$.award_items_16.id",
    "$.award_items_16.type",
    "$.award_items_16.unit",
    "$.award_items_16.coin",
    "$.award_items_16.title",
    "$.award_items_17.num",
    "$.award_items_17.id",
    "$.award_items_17.type",
    "$.award_items_17.unit",
    "$.award_items_17.coin",
    "$.award_items_17.title",
    "$.award_items_18.num",
    "$.award_items_18.id",
    "$.award_items_18.type",
    "$.award_items_18.unit",
    "$.award_items_18.coin",
    "$.award_items_18.title",
    "$.award_items_19.num",
    "$.award_items_19.id",
    "$.award_items_19.type",
    "$.award_items_19.unit",
    "$.award_items_19.coin",
    "$.award_items_19.title",
    "$.award_items_20.num",
    "$.award_items_20.id",
    "$.award_items_20.type",
    "$.award_items_20.unit",
    "$.award_items_20.coin",
    "$.award_items_20.title",
    "$.date",
    "$.timestamp",
    "$.created_at.$date"
        ]
    }

第一种方式是使用 python的第三方库jsonpath 进行解析并写入:代码如下:

# encoding:utf-8

import io
import json
import arrow
import os
from jsonpath import jsonpath

BUFF_SIZE = 3000
BUFF_LIST = []

# 将list数据写入本地
def batch_to_local(batch_list, local_obs_path):
    with open(local_obs_path, "a", encoding='utf-8') as f:
        # 批量序列化
        f.write('\n'.join(batch_list))
        f.write('\n')

def jsonToCsv(jsonpathPath, jsonDataPath, oPath, sep=','):
    global BUFF_LIST
    jpDictArr = json.loads(io.open(jsonpathPath, "r", encoding='UTF-8').read())['jsonpaths']

    # 判断文件是否存在
    dir_path = oPath[:oPath.rindex('/')]
    if not os.path.exists(dir_path):
        print("create directory...")
        os.makedirs(dir_path)
    # 写入本地如果文件存在 则删除
    if os.path.exists(oPath):
        print("file already exists,removed ..")
        os.remove(oPath)
    print("writing...")

    # 获得json数据
    for line in io.open(jsonDataPath):
        oList = []
        for j in jpDictArr:
            sV = jsonpath(json.loads(line), expr=j)
            # 对号入座
            if sV:
                oList.append(str(sV[0]).strip(sep))
            else:
                oList.append('')
        # 写入
        BUFF_LIST.append(sep.join(oList))
        if len(BUFF_LIST) == BUFF_SIZE:
            batch_to_local(BUFF_LIST, oPath)
            BUFF_LIST = []

    if len(BUFF_LIST) > 0:
        batch_to_local(BUFF_LIST, oPath)
        BUFF_LIST = []

if __name__ == '__main__':
    sT = arrow.now().timestamp
    jsonToCsv('user_charge_box_log_jsonpath.json', '2021-08-14', 'D:/leeston/leeston/ML-BigData/JSON/jsonToCsv.csv')
    print('cost : {} seconds !!'.format(arrow.now().timestamp - sT))

本地测试转换耗时:
file
第二种,手写实现jsonpath解析json数据:

# encoding:utf-8

import io
import json
import arrow
import os

BUFF_SIZE = 3000
BUFF_LIST = []

# 将list数据写入本地
def batch_to_local(batch_list, local_obs_path):
    with open(local_obs_path, "a", encoding='utf-8') as f:
        # 批量序列化
        f.write('\n'.join(batch_list))
        f.write('\n')

# 递归实现jsonpath 解析
def getDtaByKeyPath(keyStr, jsonDict, kLen=0):
    kL = keyStr.strip('.').split('.')
    if kLen < len(kL):
        if kL[kLen] in jsonDict:
            return getDtaByKeyPath(keyStr, jsonDict[kL[kLen]], kLen + 1)
        if kLen == 0:
            return {}
    else:
        return jsonDict

def jsonToCsv(jsonpathPath, jsonDataPath, oPath, sep=','):
    global BUFF_LIST

    jpDictArr = json.loads(io.open(jsonpathPath, "r", encoding='UTF-8').read())['jsonpaths']

    # 判断文件是否存在
    dir_path = oPath[:oPath.rindex('/')]
    if not os.path.exists(dir_path):
        print("create directory...")
        os.makedirs(dir_path)
    # 写入本地如果文件存在 则删除
    if os.path.exists(oPath):
        print("file already exists,removed ..")
        os.remove(oPath)
    print("writing...")

    # 获得json数据
    for line in io.open(jsonDataPath):
        oList = []
        for j in jpDictArr:
            sV = getDtaByKeyPath(j.strip('.$'), json.loads(line.strip('\n')))
            # 对号入座
            if sV == {}:
                oList.append('')
            else:
                oList.append(str(sV).strip(sep))
        # 写入
        BUFF_LIST.append(sep.join(oList))
        if len(BUFF_LIST) == BUFF_SIZE:
            batch_to_local(BUFF_LIST, oPath)
            BUFF_LIST = []

    if len(BUFF_LIST) > 0:
        batch_to_local(BUFF_LIST, oPath)
        BUFF_LIST = []

if __name__ == '__main__':
    sT = arrow.now().timestamp
    jsonToCsv('user_charge_box_log_jsonpath.json', '2021-08-14', 'D:/leeston/leeston/ML-BigData/JSON/jsonToCsv2.csv')
    print('cost : {} seconds !!'.format(arrow.now().timestamp - sT))

转换耗时:
file
原始json:
file
转换为csv后:
file

由上诉可见,手写实现效率明显高于第三方API
我用的数仓是 亚马逊的REDSHIFT ,支持通过jsonpath直接copy数据到RDB,最近考虑使用华为高斯db ,但与其销售人员沟通中发现他们竟然不支持json格式直接入库!我的数仓400张表全部是json格式直接入库的,这点让我很难接受,如果不支持jsonpath 就意味着每张表都要写代码处理,这样的繁琐的ETL过程跟流水线上的工人有何区别,在我看来,所有的ETL工作都能通过配置简单的配置用统一框架处理,因此,我觉得json转csv的过程还是很有必要的,
file
如何快速获取一个json表的jsonpath呢?代码如下

from __future__ import print_function
import json

def dict_generator(indict, pre=None):
    pre = pre[:] if pre else []
    if isinstance(indict, dict):
        for key, value in indict.items():
            if isinstance(value, dict):
                if len(value) == 0:
                    yield pre + [key, '{}']
                else:
                    for d in dict_generator(value, pre + [key]):
                        yield d
            elif isinstance(value, list):
                if len(value) == 0:
                    yield pre + [key, '[]']
                else:
                    for v in value:
                        for d in dict_generator(v, pre + [key]):
                            yield d
            elif isinstance(value, tuple):
                if len(value) == 0:
                    yield pre + [key, '()']
                else:
                    for v in value:
                        for d in dict_generator(v, pre + [key]):
                            yield d
            else:
                yield pre + [key, value]
    else:
        yield indict

def jsonpath(sValue, res=''):
    for i in dict_generator(sValue):
        key = '.'.join(i[0:-1])
        line = '    ' + '"$.' + key + '",'
        res += line
    path = res.replace(',', ',\n')[0:-2]
    jsonpath = '''{
    "jsonpaths": [
    ''' + path + '''
        ]
    }
    '''
    print(jsonpath)

# 递归计算varchar值
def get_varchar_size(l_str, step=1):
    l_len = len(l_str.encode('utf-8'))

    if 128 > l_len:
        return 128
    elif 128 <= l_len <= 65535:
        if 2 ** step > l_len:
            return 2 ** step
        if 2 ** step == l_len and 2 ** (step + 1) <= 65535:
            return 2 ** (step + 1)
        if 2 ** step < l_len:
            return get_varchar_size(l_str, step + 1)
    else:
        raise Exception('超出最大值!')

def create_table(sValue, table_name, is_written=True, res=''):
    for i in dict_generator(sValue):
        key = '.'.join(i[0:-1])
        v = i[len(i) - 1]
        old_column = key.split('.')

        # print(sValue[key])
        if len(old_column) >= 2:
            # column = (old_column[-2] + '_' + old_column[-1]).replace('$', '')
            column = '_'.join(old_column).replace('$', '')
            if column == '_id_oid':
                column = '_id'
            if column == 'created_at_date':
                column = 'created_at'

        # 打散后的长度只有1时直接替换 $
        else:
            column = key.split('.')[-1].replace('$', '')

        # 先给个默认的大小
        new_column = column + '       ' + 'varchar(128)' + ','

        # varchar 类型重新计算,链接给出256
        if type(v) == str:
            if str(v).lower().__contains__('.jpg') or str(v).lower().__contains__('.png'):
                new_column = column + '       ' + 'varchar(256)' + ','
            else:
                new_column = column + '       ' + 'varchar({})'.format(get_varchar_size(v)) + ','

        if type(v) == int:
            if v >= 1000000000 or v <= -1000000000:
                new_column = column + '       ' + 'bigint' + ','
            else:
                new_column = column + '       ' + 'integer' + ','

        if type(v) == float:
            new_column = column + '       ' + 'float' + ','

        if type(v) == bool:
            new_column = column + '       ' + 'boolean' + ','

        if column == 'external_date':
            new_column = column + '       ' + 'varchar(16)' + ','

        if column == 'external_time' or column == 'created_at':
            new_column = column + '       ' + 'varchar(32)' + ','

        if column in ('user_id', 'room_id', 'star_id', 'uid', 'broker_id', 'host_id', 'invite_id'):
            new_column = column + '       ' + 'integer' + ','

        res += new_column
    # 对res操作
    # pre = 'pre_buffer|'
    # pre_date_time = 'external_time       varchar(32),external_date       varchar(16),'
    # res = pre + res
    # res = res.replace(pre_date_time, '').replace(pre, 'external_date       varchar(16),external_time       varchar(32),')
    columns = res.replace(',', ',\n')[0:-2]
    table_sql = '''
    DROP TABLE IF EXISTS {table_name} CASCADE;
    CREATE TABLE {table_name}
    (
    {columns}
    ) diststyle even;
    GRANT ALL ON {table_name} TO group data_write;
    GRANT SELECT ON {table_name} TO group data_read;
    '''
    table_sql = table_sql.format(columns=columns, table_name=table_name)
    print(table_sql)
    # if is_written:
    #     with open(file_par_path + '\\{table_name}_sql.txt'.format(table_name=table_name),
    #               'w') as f:
    #         f.write(table_sql)
    # return table_sql

def comment_table(sValue, table_name):
    res = "COMMENT ON TABLE %s IS '一一';" % table_name
    for i in dict_generator(sValue):
        key = '.'.join(i[0:-1])
        old_clomn = key.split('.')
        if len(old_clomn) >= 2:
            clomn = (old_clomn[-2] + '_' + old_clomn[-1]).replace('$', '')
        else:
            clomn = key.split('.')[-1].replace('$', '')
        comment = 'COMMENT ON COLUMN %s.' % table_name + clomn + " IS '一一一';"
        res += comment
    comments = res.replace(';', ';\n')[0:-1]
    print(comments)

jsonStr = '''
{
    "_id" : "99889550_69443035",
    "check_point" : 1628524800000,
    "counts" : {
        "STAR" : 1
    },
    "created_at" : 1625915379264,
    "expire_at" : 1628438400000,
    "levels" : {
        "STAR" : {
            "level" : 1,
            "remain" : -1,
            "expire_at" : 1628438400000
        }
    },
    "star" : 99889550,
    "start" : 1625846400000,
    "timestamp" : 1625915379264,
    "uid" : 69443035,
    "totals" : {
        "STAR" : 1
    }
}

def getJsonpathAndCreateTable(tbname):
    sValue = json.loads(jsonStr)

    # 生成jsonpath
    print('---' * 40)
    jsonpath(sValue)
    print('---' * 40)
    # 生成建表语句
    create_table(sValue, tbname)
    print('---' * 40)
    # 生成表备注信息
    comment_table(sValue, tbname)
    print('---' * 40)

if __name__ == "__main__":
    table_name = 'bd_test.leaveroom_es'
    getJsonpathAndCreateTable(table_name)

上诉代码代码不但给出了获得jsonpath的方式,还给出了jsonpath对应的数据库表的建表语句

问题一: 如果我的mongoDB json中带有很多数组 怎么处理呢?类似如下一条数据

{
    "_id": "6116978aa4a1ef2e4114b603",
    "user_id": 68929288,
    "nick_name": "打鱼打到死",
    "room_id": 2912313,
    "game_name": "open_egg",
    "prop_id": 3,
    "prop_name": "金锤子",
    "prop_num": 10,
    "prop_cost_coin": 500,
    "prop_cost_coin_original": 500,
    "ran_type": 0,
    "ran": {
        "gifts": [{
                "giftType": "bag",
                "giftName": "黄金麦克风",
                "giftId": 591,
                "giftNum": 1,
                "giftPicUrl": "https://img.sumeme.com/58/2/1537252271290.jpg",
                "giftCoinPrice": 20,
                "beginRate": 0,
                "endRate": 6350,
                "rewardCoin": false,
                "currRadio": 0,
                "nextRadio": 0,
                "neadBegin": false
            },
            {
                "giftType": "bag",
                "giftName": "守护之心",
                "giftId": 938,
                "giftNum": 1,
                "giftPicUrl": "https://img.sumeme.com/17/1/1597321030225.png",
                "giftCoinPrice": 500,
                "beginRate": 6350,
                "endRate": 9600,
                "rewardCoin": false,
                "currRadio": 0,
                "nextRadio": 0,
                "neadBegin": false
            },
            {
                "giftType": "bag",
                "giftName": "为爱打CALL",
                "giftId": 934,
                "giftNum": 1,
                "giftPicUrl": "https://img.sumeme.com/10/2/1597320560842.png",
                "giftCoinPrice": 2000,
                "beginRate": 9600,
                "endRate": 9785,
                "rewardCoin": false,
                "currRadio": 0,
                "nextRadio": 0,
                "neadBegin": false
            },
            {
                "giftType": "bag",
                "giftName": "love",
                "giftId": 939,
                "giftNum": 1,
                "giftPicUrl": "https://img.sumeme.com/58/2/1597321299386.png",
                "giftCoinPrice": 5000,
                "beginRate": 9785,
                "endRate": 9935,
                "rewardCoin": false,
                "currRadio": 0,
                "nextRadio": 0,
                "neadBegin": false
            }

        ]
    },
    "gifts": [{
            "giftType": "bag",
            "giftName": "守护之心",
            "giftId": 938,
            "giftNum": 6,
            "giftPicUrl": "https://img.sumeme.com/17/1/1597321030225.png",
            "giftCoinPrice": 500,
            "beginRate": 6350,
            "endRate": 9600,
            "rewardCoin": false,
            "currRadio": 0,
            "nextRadio": 0,
            "neadBegin": false
        },
        {
            "giftType": "bag",
            "giftName": "黄金麦克风",
            "giftId": 591,
            "giftNum": 4,
            "giftPicUrl": "https://img.sumeme.com/58/2/1537252271290.jpg",
            "giftCoinPrice": 20,
            "beginRate": 0,
            "endRate": 6350,
            "rewardCoin": false,
            "currRadio": 0,
            "nextRadio": 0,
            "neadBegin": false
        }
    ],
    "reason": "",
    "trade_id": "68929288_1628870538974",
    "timestamp": 1628870538976
}

答: 此时我们就考虑每一个带json数组的key ,将这个json先进行预处理,转为不带数组的json,可以将其转为一行json
或者将其转为多行json,这些转换方法 早已被我写入了通用框架处理,只需要简单的配置即可,json预处理转换后的结果大致如下:

   {
    "_id": {
        "$oid": "611696e65ede6b810e352ac3"
    },
    "user_id": 29569297,
    "nick_name": "\u767d\u5ad6\u8bd7\u8bd7\u306e\u5c0f\u4e09\u90ce",
    "room_id": 69562193,
    "game_name": "open_egg",
    "prop_id": 1,
    "prop_name": "\u94dc\u9524\u5b50",
    "prop_num": 10,
    "prop_cost_coin": 100,
    "prop_cost_coin_original": 100,
    "ran_type": 0,
    "ran": {},
    "reason": "",
    "trade_id": "29569297_1628870374522",
    "timestamp": 1628870374523,
    "external_time": "2021-08-13 23:59:34",
    "external_date": "2021-08-13",
    "ran_gifts_1": {
        "giftType": "bag",
        "giftName": "\u73ab\u7470",
        "giftId": 6,
        "giftNum": 1,
        "giftPicUrl": "https://img.sumeme.com/18/2/1537434791634.jpg",
        "giftCoinPrice": 10,
        "beginRate": 0,
        "endRate": 6000,
        "rewardCoin": false,
        "currRadio": 0,
        "nextRadio": 0,
        "neadBegin": false
    },
    "ran_gifts_2": {
        "giftType": "bag",
        "giftName": "\u597d\u559c\u6b22\u4f60",
        "giftId": 995,
        "giftNum": 1,
        "giftPicUrl": "https://img.sumeme.com/5/5/1548215050437.jpg",
        "giftCoinPrice": 100,
        "beginRate": 6000,
        "endRate": 9340,
        "rewardCoin": false,
        "currRadio": 0,
        "nextRadio": 0,
        "neadBegin": false
    },
    "ran_gifts_3": {
        "giftType": "bag",
        "giftName": "\u5b88\u62a4\u4e4b\u5fc3",
        "giftId": 938,
        "giftNum": 1,
        "giftPicUrl": "https://img.sumeme.com/17/1/1597321030225.png",
        "giftCoinPrice": 500,
        "beginRate": 9340,
        "endRate": 9915,
        "rewardCoin": false,
        "currRadio": 0,
        "nextRadio": 0,
        "neadBegin": false
    },
    "ran_gifts_4": {
        "giftType": "bag",
        "giftName": "\u4e3a\u7231\u6253CALL",
        "giftId": 934,
        "giftNum": 1,
        "giftPicUrl": "https://img.sumeme.com/10/2/1597320560842.png",
        "giftCoinPrice": 2000,
        "beginRate": 9915,
        "endRate": 9970,
        "rewardCoin": false,
        "currRadio": 0,
        "nextRadio": 0,
        "neadBegin": false
    },
    "gifts_1": {
        "giftType": "bag",
        "giftName": "\u597d\u559c\u6b22\u4f60",
        "giftId": 995,
        "giftNum": 4,
        "giftPicUrl": "https://img.sumeme.com/5/5/1548215050437.jpg",
        "giftCoinPrice": 100,
        "beginRate": 6000,
        "endRate": 9340,
        "rewardCoin": false,
        "currRadio": 0,
        "nextRadio": 0,
        "neadBegin": false
    },
    "gifts_2": {
        "giftType": "bag",
        "giftName": "\u73ab\u7470",
        "giftId": 6,
        "giftNum": 6,
        "giftPicUrl": "https://img.sumeme.com/18/2/1537434791634.jpg",
        "giftCoinPrice": 10,
        "beginRate": 0,
        "endRate": 6000,
        "rewardCoin": false,
        "currRadio": 0,
        "nextRadio": 0,
        "neadBegin": false
    }
}

上诉是将带数组的json进行预处理,转为一行json,这样就能直接进行csv转换了,对应的表结构大概如下:
file

问题二: 上诉一直提到通用处理框架将json进行预处理,转为不带数组的json ,那通用框架到底是什么 怎么进行预处理的呢,其实我用的是redshift,支持copy json数据直接入库,我的通用处理框架不但可以解析带json数组的json,而且还能顺便上传到 AWS S3 (一种亚马逊OBS)并入库,从ODS层json数据到数仓,仅仅需要简单的配置即可,通用处理脚本大致如下(其中一种,这里我仅展示下么么交友数据处理框架):略

由于篇幅有限,代码过长,我就不贴预处理配置框架的代码逻辑了

总结:如果您是一名刚入职场的信任,领导信任您,把后端mongoDB的数据都交给你处理,那您面对一张张麻头皮表,您会优先想到用jsonpath处理么?还是说直接写代码进行遍历、get 硬钢每张表?市面上的json扁平化函数基本都是转多行处理并且面对有多个内嵌关系的json数组处理显得极为鸡肋,不建议盲目使用,实在无法处理的复杂表,可以写代码单独处理较为方便,因此,我们时刻要秉持奥卡姆剃刀原则,将问题最简化才是真正的摸鱼之道。

当然如果这几行代码真的对您有帮助,还是希望您能够优先使用集群资源进行转换,可直接写hadoop-streming,或者mapreduce,如果您能使用spark或者flink更佳,如果您非要在本地进行可以选择用多线程处理,可以让一个线程处理一张mongoDB表,这样效率就会很高,当然前提要确保您的本地盘是SSD.

版权声明:原创作品,允许转载,转载时务必以超链接的形式表明出处和作者信息。否则将追究法律责任。来自海汼部落-leeston9,http://hainiubl.com/topics/75768
点赞
成为第一个点赞的人吧 :bowtie:
回复数量: 2
  • 123456789987654321 奶牛(野牛的大哥)
    2021-08-17 21:09:29

    mapreduce支持monogdb的

  • leeston9 上海工程技术大学自动化专业2019级毕业生
    2021-08-17 22:31:30

    @123456789987654321 我主推jsonpath是想解放繁琐的ETL过程,想通过简单的配置就解决ETL问题,手写mapreduce的操作未免显得太古老,还不如我直接定义redshift的UDF函数,毕竟支持java和python库,redshift也支持的EMR ,也比MR更聪明,就是想利用EMR写成一个通用的先解析json数组再转换CSV的框架会有些困难

暂无评论~~
  • 请注意单词拼写,以及中英文排版,参考此页
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`, 更多语法请见这里 Markdown 语法
  • 支持表情,可用Emoji的自动补全, 在输入的时候只需要 ":" 就可以自动提示了 :metal: :point_right: 表情列表 :star: :sparkles:
  • 上传图片, 支持拖拽和剪切板黏贴上传, 格式限制 - jpg, png, gif,教程
  • 发布框支持本地存储功能,会在内容变更时保存,「提交」按钮点击时清空
Ctrl+Enter