花了挺久才看懂环形缓冲区的原理,把自己觉得重要的地方都注解在了代码里,如果有理解错误的地方,希望能帮我指正。
T1. LineRecord读取数据分片
T2. MapOutPutBuffer的创建于数据输入
T3. 数据的溢写与归并
public void run(final JobConf job, final TaskUmbilicalProtocol umbilical)
throws IOException, ClassNotFoundException, InterruptedException {
this.umbilical = umbilical;
if (isMapTask()) {
// If there are no reducers then there won't be any sort. Hence the map
// phase will govern the entire attempt's progress.
if (conf.getNumReduceTasks() == 0) {
mapPhase = getProgress().addPhase("map", 1.0f);
} else {
// If there are reducers then the entire attempt's progress will be
// split between the map phase (67%) and the sort phase (33%).
mapPhase = getProgress().addPhase("map", 0.667f);
sortPhase = getProgress().addPhase("sort", 0.333f);
}
}
TaskReporter reporter = startReporter(umbilical);
boolean useNewApi = job.getUseNewMapper();
initialize(job, getJobID(), reporter, useNewApi);
// check if it is a cleanupJobTask
if (jobCleanup) {
runJobCleanupTask(umbilical, reporter);
return;
}
if (jobSetup) {
runJobSetupTask(umbilical, reporter);
return;
}
if (taskCleanup) {
runTaskCleanupTask(umbilical, reporter);
return;
}
if (useNewApi) {
// 方法入口
runNewMapper(job, splitMetaInfo, umbilical, reporter);
} else {
runOldMapper(job, splitMetaInfo, umbilical, reporter);
}
done(umbilical, reporter);
}
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewMapper(final JobConf job,
final TaskSplitIndex splitIndex,
final TaskUmbilicalProtocol umbilical,
TaskReporter reporter
) throws IOException, ClassNotFoundException,
InterruptedException {
// make a task context so we can get the classes
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job,
getTaskID(),
reporter);
// make a mapper
org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =
(org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
ReflectionUtils.newInstance(taskContext.getMapperClass(), job);
// make the input format
org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =
(org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);
// rebuild the input split
// 根据切片索引获取当前切片的位置信息和偏移量
org.apache.hadoop.mapreduce.InputSplit split = null;
split = getSplitDetails(new Path(splitIndex.getSplitLocation()),
splitIndex.getStartOffset());
LOG.info("Processing split: " + split);
// 默认LineRecord获得入口 【1】
org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
new NewTrackingRecordReader<INKEY,INVALUE>
(split, inputFormat, reporter, taskContext);
job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
org.apache.hadoop.mapreduce.RecordWriter output = null;
// 根据reduce数量来判断输出模式,output初始化,主要是环形缓冲区的创建 【2】
if (job.getNumReduceTasks() == 0) {
output =
new NewDirectOutputCollector(taskContext, job, umbilical, reporter);
} else {
output = new NewOutputCollector(taskContext, job, umbilical, reporter);
}
org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE>
mapContext =
new MapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(),
input, output,
committer,
reporter, split);
org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context
mapperContext =
new WrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(
mapContext);
try {
// 读取数据分片核心步骤入口 【1】
input.initialize(split, mapperContext);
// mapper程序开始运行,环形缓冲区进行排序,溢写,输出 【2】
mapper.run(mapperContext);
mapPhase.complete();
setPhase(TaskStatus.Phase.SORT);
statusUpdate(umbilical);
input.close();
input = null;
// 归并 【3】
output.close(mapperContext);
output = null;
} finally {
closeQuietly(input);
closeQuietly(output, mapperContext);
}
}
第一层代码:这里需要调用inputFormat类中方法来生成行读取器
NewTrackingRecordReader(org.apache.hadoop.mapreduce.InputSplit split,
org.apache.hadoop.mapreduce.InputFormat<K, V> inputFormat,
TaskReporter reporter,
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext)
throws InterruptedException, IOException {
this.reporter = reporter;
this.inputRecordCounter = reporter
.getCounter(TaskCounter.MAP_INPUT_RECORDS);
this.fileInputByteCounter = reporter
.getCounter(FileInputFormatCounter.BYTES_READ);
List <Statistics> matchedStats = null;
if (split instanceof org.apache.hadoop.mapreduce.lib.input.FileSplit) {
matchedStats = getFsStatistics(((org.apache.hadoop.mapreduce.lib.input.FileSplit) split)
.getPath(), taskContext.getConfiguration());
}
fsStats = matchedStats;
long bytesInPrev = getInputBytes(fsStats);
// 创建方法入口
this.real = inputFormat.createRecordReader(split, taskContext);
long bytesInCurr = getInputBytes(fsStats);
fileInputByteCounter.increment(bytesInCurr - bytesInPrev);
}
第二层代码
public RecordReader<LongWritable, Text>
createRecordReader(InputSplit split,
TaskAttemptContext context) {
String delimiter = context.getConfiguration().get(
"textinputformat.record.delimiter");
byte[] recordDelimiterBytes = null;
if (null != delimiter)
recordDelimiterBytes = delimiter.getBytes(Charsets.UTF_8);
return new LineRecordReader(recordDelimiterBytes);
}
核心思想:数据分片是调用了InputFormat的getSplit方法来进行对数据块的切分,此切分的单位是按字节数来切分的,当时并不会考量到单词等问题,直接处理会造成数据丢失等。这里有了行读取器之后,切分的单位则是以行为单位,读取下一个分片的第一行可以有效避免数据丢失的问题。
第一层:这里需要利用行读取器进行切片读取
public void initialize(org.apache.hadoop.mapreduce.InputSplit split,
org.apache.hadoop.mapreduce.TaskAttemptContext context
) throws IOException, InterruptedException {
long bytesInPrev = getInputBytes(fsStats);
// 行读取器进行对切片的初始化
real.initialize(split, context);
long bytesInCurr = getInputBytes(fsStats);
fileInputByteCounter.increment(bytesInCurr - bytesInPrev);
}
第二层代码:核心步骤
public void initialize(InputSplit genericSplit,
TaskAttemptContext context) throws IOException {
FileSplit split = (FileSplit) genericSplit;
Configuration job = context.getConfiguration();
this.maxLineLength = job.getInt(MAX_LINE_LENGTH, Integer.MAX_VALUE);
// 偏移量的定位
start = split.getStart();
end = start + split.getLength();
final Path file = split.getPath();
// open the file and seek to the start of the split
final FileSystem fs = file.getFileSystem(job);
fileIn = fs.open(file);
// 压缩文件处理
CompressionCodec codec = new CompressionCodecFactory(job).getCodec(file);
if (null!=codec) {
isCompressedInput = true;
decompressor = CodecPool.getDecompressor(codec);
if (codec instanceof SplittableCompressionCodec) {
final SplitCompressionInputStream cIn =
((SplittableCompressionCodec)codec).createInputStream(
fileIn, decompressor, start, end,
SplittableCompressionCodec.READ_MODE.BYBLOCK);
in = new CompressedSplitLineReader(cIn, job,
this.recordDelimiterBytes);
start = cIn.getAdjustedStart();
end = cIn.getAdjustedEnd();
filePosition = cIn;
} else {
in = new SplitLineReader(codec.createInputStream(fileIn,
decompressor), job, this.recordDelimiterBytes);
filePosition = fileIn;
}
} else {
fileIn.seek(start);
in = new UncompressedSplitLineReader(
fileIn, job, this.recordDelimiterBytes, split.getLength());
filePosition = fileIn;
}
// If this is not the first split, we always throw away first record
// because we always (except the last split) read one extra line in
// next() method.
// 偏移量被修改为第二行的偏移量,如果不是该文件的第一个切片,向下额外读取一行。
if (start != 0) {
start += in.readLine(new Text(), 0, maxBytesToConsume(start));
}
this.pos = start;
}
mapper.run方法进入后的输入
public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
// 利用LineRecord来判断有误
while (context.nextKeyValue()) {
// 进入自身书写的Map方法中
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
} finally {
cleanup(context);
}
}
context.nextKeyValue()的底层实现
public boolean nextKeyValue() throws IOException, InterruptedException {
long bytesInPrev = getInputBytes(fsStats);
// LineRecord
boolean result = real.nextKeyValue();
long bytesInCurr = getInputBytes(fsStats);
if (result) {
inputRecordCounter.increment(1);
}
fileInputByteCounter.increment(bytesInCurr - bytesInPrev);
reporter.setProgress(getProgress());
return result;
}
context.getCurrentKey(), context.getCurrentValue()的底层实现
// LineRecord类中
public LongWritable getCurrentKey() {
return key;
}
@Override
public Text getCurrentValue() {
return value;
}
第一级
NewOutputCollector(org.apache.hadoop.mapreduce.JobContext jobContext,
JobConf job,
TaskUmbilicalProtocol umbilical,
TaskReporter reporter
) throws IOException, ClassNotFoundException {
// 环形缓冲区创建入口
collector = createSortingCollector(job, reporter);
// reduce的决定因素
partitions = jobContext.getNumReduceTasks();
if (partitions > 1) {
partitioner = (org.apache.hadoop.mapreduce.Partitioner<K,V>)
ReflectionUtils.newInstance(jobContext.getPartitionerClass(), job);
} else {
partitioner = new org.apache.hadoop.mapreduce.Partitioner<K,V>() {
@Override
public int getPartition(K key, V value, int numPartitions) {
return partitions - 1;
}
};
}
}
第二级
private <KEY, VALUE> MapOutputCollector<KEY, VALUE>
createSortingCollector(JobConf job, TaskReporter reporter)
throws IOException, ClassNotFoundException {
MapOutputCollector.Context context =
new MapOutputCollector.Context(this, job, reporter);
Class<?>[] collectorClasses = job.getClasses(
JobContext.MAP_OUTPUT_COLLECTOR_CLASS_ATTR, MapOutputBuffer.class);
int remainingCollectors = collectorClasses.length;
Exception lastException = null;
for (Class clazz : collectorClasses) {
try {
if (!MapOutputCollector.class.isAssignableFrom(clazz)) {
throw new IOException("Invalid output collector class: " + clazz.getName() +
" (does not implement MapOutputCollector)");
}
Class<? extends MapOutputCollector> subclazz =
clazz.asSubclass(MapOutputCollector.class);
LOG.debug("Trying map output collector class: " + subclazz.getName());
MapOutputCollector<KEY, VALUE> collector =
ReflectionUtils.newInstance(subclazz, job);
// 环形缓冲区创建方法入口
collector.init(context);
LOG.info("Map output collector class = " + collector.getClass().getName());
return collector;
} catch (Exception e) {
String msg = "Unable to initialize MapOutputCollector " + clazz.getName();
if (--remainingCollectors > 0) {
msg += " (" + remainingCollectors + " more collector(s) to try)";
}
lastException = e;
LOG.warn(msg, e);
}
}
throw new IOException("Initialization of all the collectors failed. " +
"Error in last collector was :" + lastException.getMessage(), lastException);
}
private IntBuffer kvmeta; // metadata overlay on backing store
// 元数据指针的三大参数,其中kvindex是个下一个要开始序列化位置
int kvstart; // marks origin of spill metadata
int kvend; // marks end of spill metadata
int kvindex; // marks end of fully serialized records
// 缓冲区分界线
int equator; // marks origin of meta/serialization
// KeyValue存储区域指针,其中bufindex是下一个开始存值的位置
int bufstart; // marks beginning of spill
int bufend; // marks beginning of collectable
int bufmark; // marks end of record
int bufindex; // marks end of collected
int bufvoid; // marks the point where we should stop
// reading at the end of the buffer
// 可以看成环形缓冲区本质上就是一个Byte数组,如何在一个数组里面实现两个区域的环形缓存是这段代码的核心
byte[] kvbuffer; // main output buffer
private final byte[] b0 = new byte[0];
// 元数据存储单个keyValue的四大参数
private static final int VALSTART = 0; // val offset in acct
private static final int KEYSTART = 1; // key offset in acct
private static final int PARTITION = 2; // partition offset in acct
private static final int VALLEN = 3; // length of value
// 元数据存储采取int类型,一个int四个字节
private static final int NMETA = 4; // num meta ints
// 一个元数据存储单位有四个参数所以一共16字节
private static final int METASIZE = NMETA * 4; // size in bytes
// spill accounting
private int maxRec;
private int softLimit;
boolean spillInProgress;;
int bufferRemaining;
volatile Throwable sortSpillException = null;
int numSpills = 0;
private int minSpillsForCombine;
private IndexedSorter sorter;
final ReentrantLock spillLock = new ReentrantLock();
final Condition spillDone = spillLock.newCondition();
final Condition spillReady = spillLock.newCondition();
final BlockingBuffer bb = new BlockingBuffer();
volatile boolean spillThreadRunning = false;
final SpillThread spillThread = new SpillThread();
private FileSystem rfs;
// Counters
private Counters.Counter mapOutputByteCounter;
private Counters.Counter mapOutputRecordCounter;
private Counters.Counter fileOutputByteCounter;
final ArrayList<SpillRecord> indexCacheList =
new ArrayList<SpillRecord>();
private int totalIndexCacheMemory;
private int indexCacheMemoryLimit;
private static final int INDEX_CACHE_MEMORY_LIMIT_DEFAULT = 1024 * 1024;
private MapTask mapTask;
private MapOutputFile mapOutputFile;
private Progress sortPhase;
private Counters.Counter spilledRecordsCounter;
public void init(MapOutputCollector.Context context
) throws IOException, ClassNotFoundException {
job = context.getJobConf();
reporter = context.getReporter();
mapTask = context.getMapTask();
mapOutputFile = mapTask.getMapOutputFile();
sortPhase = mapTask.getSortPhase();
spilledRecordsCounter = reporter.getCounter(TaskCounter.SPILLED_RECORDS);
partitions = job.getNumReduceTasks();
rfs = ((LocalFileSystem)FileSystem.getLocal(job)).getRaw();
//sanity checks
// 环形缓冲区的溢写比例确定,默认0.8
final float spillper =
job.getFloat(JobContext.MAP_SORT_SPILL_PERCENT, (float)0.8);
// 环形缓冲区总容量为100MB
final int sortmb = job.getInt(JobContext.IO_SORT_MB, 100);
indexCacheMemoryLimit = job.getInt(JobContext.INDEX_CACHE_MEMORY_LIMIT,
INDEX_CACHE_MEMORY_LIMIT_DEFAULT);
if (spillper > (float)1.0 || spillper <= (float)0.0) {
throw new IOException("Invalid \"" + JobContext.MAP_SORT_SPILL_PERCENT +
"\": " + spillper);
}
if ((sortmb & 0x7FF) != sortmb) {
throw new IOException(
"Invalid \"" + JobContext.IO_SORT_MB + "\": " + sortmb);
}
// 默认排序规则为快排,将key从无序变为有序
sorter = ReflectionUtils.newInstance(job.getClass("map.sort.class",
QuickSort.class, IndexedSorter.class), job);
// buffers and accounting
int maxMemUsage = sortmb << 20;
maxMemUsage -= maxMemUsage % METASIZE;
// 将100MB转换为字节数后创建字节数组
kvbuffer = new byte[maxMemUsage];
bufvoid = kvbuffer.length;
// 这里元数据的指针改为int类型的4字节一个单位来存储,也就是*4后就为byte数组的指针
kvmeta = ByteBuffer.wrap(kvbuffer)
.order(ByteOrder.nativeOrder())
.asIntBuffer();
setEquator(0);
bufstart = bufend = bufindex = equator;
kvstart = kvend = kvindex;
maxRec = kvmeta.capacity() / NMETA;
// 写入80MB准备溢写
softLimit = (int)(kvbuffer.length * spillper);
// 很重要的指标,剩余多少可以写入的空间
bufferRemaining = softLimit;
LOG.info(JobContext.IO_SORT_MB + ": " + sortmb);
LOG.info("soft limit at " + softLimit);
LOG.info("bufstart = " + bufstart + "; bufvoid = " + bufvoid);
LOG.info("kvstart = " + kvstart + "; length = " + maxRec);
// k/v serialization
// 定义key的排序比较器,如果没有采取默认比较器,如有是对象的化,采取自己重写的内部比较器。
comparator = job.getOutputKeyComparator();
keyClass = (Class<K>)job.getMapOutputKeyClass();
valClass = (Class<V>)job.getMapOutputValueClass();
serializationFactory = new SerializationFactory(job);
keySerializer = serializationFactory.getSerializer(keyClass);
keySerializer.open(bb);
valSerializer = serializationFactory.getSerializer(valClass);
valSerializer.open(bb);
// output counters
mapOutputByteCounter = reporter.getCounter(TaskCounter.MAP_OUTPUT_BYTES);
mapOutputRecordCounter =
reporter.getCounter(TaskCounter.MAP_OUTPUT_RECORDS);
fileOutputByteCounter = reporter
.getCounter(TaskCounter.MAP_OUTPUT_MATERIALIZED_BYTES);
// compression
if (job.getCompressMapOutput()) {
Class<? extends CompressionCodec> codecClass =
job.getMapOutputCompressorClass(DefaultCodec.class);
codec = ReflectionUtils.newInstance(codecClass, job);
} else {
codec = null;
}
// combiner的初始化
final Counters.Counter combineInputCounter =
reporter.getCounter(TaskCounter.COMBINE_INPUT_RECORDS);
combinerRunner = CombinerRunner.create(job, getTaskID(),
combineInputCounter,
reporter, null);
if (combinerRunner != null) {
final Counters.Counter combineOutputCounter =
reporter.getCounter(TaskCounter.COMBINE_OUTPUT_RECORDS);
combineCollector= new CombineOutputCollector<K,V>(combineOutputCounter, reporter, job);
} else {
combineCollector = null;
}
spillInProgress = false;
minSpillsForCombine = job.getInt(JobContext.MAP_COMBINE_MIN_SPILLS, 3);
// 守护线程
spillThread.setDaemon(true);
spillThread.setName("SpillThread");
spillLock.lock();
try {
// 启动溢写线程
spillThread.start();
while (!spillThreadRunning) {
spillDone.await();
}
} catch (InterruptedException e) {
throw new IOException("Spill thread failed to initialize", e);
} finally {
spillLock.unlock();
}
if (sortSpillException != null) {
throw new IOException("Spill thread failed to initialize",
sortSpillException);
}
}
承接第一核心的第三阶段中,执行自己程序中的context.write()方法
public void write(KEYOUT key, VALUEOUT value
) throws IOException, InterruptedException {
output.write(key, value);
}
public void write(K key, V value) throws IOException, InterruptedException {
collector.collect(key, value,
partitioner.getPartition(key, value, partitions));
}
public synchronized void collect(K key, V value, final int partition
) throws IOException {
reporter.progress();
if (key.getClass() != keyClass) {
throw new IOException("Type mismatch in key from map: expected "
+ keyClass.getName() + ", received "
+ key.getClass().getName());
}
if (value.getClass() != valClass) {
throw new IOException("Type mismatch in value from map: expected "
+ valClass.getName() + ", received "
+ value.getClass().getName());
}
if (partition < 0 || partition >= partitions) {
throw new IOException("Illegal partition for " + key + " (" +
partition + ")");
}
checkSpillException();
bufferRemaining -= METASIZE;
// 将剩余空间减去元数据长度进行判断,是否需要进入溢写阶段
if (bufferRemaining <= 0) {
// start spill if the thread is not running and the soft limit has been
// reached
spillLock.lock();
try {
do {
if (!spillInProgress) {
final int kvbidx = 4 * kvindex;
final int kvbend = 4 * kvend;
// serialized, unspilled bytes always lie between kvindex and
// bufindex, crossing the equator. Note that any void space
// created by a reset must be included in "used" bytes
final int bUsed = distanceTo(kvbidx, bufindex);
final boolean bufsoftlimit = bUsed >= softLimit;
if ((kvbend + METASIZE) % kvbuffer.length !=
equator - (equator % METASIZE)) {
// spill finished, reclaim space
resetSpill();
bufferRemaining = Math.min(
distanceTo(bufindex, kvbidx) - 2 * METASIZE,
softLimit - bUsed) - METASIZE;
continue;
} else if (bufsoftlimit && kvindex != kvend) {
// spill records, if any collected; check latter, as it may
// be possible for metadata alignment to hit spill pcnt
// 方法入口
startSpill();
final int avgRec = (int)
(mapOutputByteCounter.getCounter() /
mapOutputRecordCounter.getCounter());
// leave at least half the split buffer for serialization data
// ensure that kvindex >= bufindex
final int distkvi = distanceTo(bufindex, kvbidx);
// 下面两步我认为是实现环形缓冲区的神来之笔吧
// newPos的位置约为溢写开始剩余空间的中间指针
final int newPos = (bufindex +
Math.max(2 * METASIZE - 1,
Math.min(distkvi / 2,
distkvi / (METASIZE + avgRec) * METASIZE)))
% kvbuffer.length;
// 此方法将kv指针和元数据指针都定位到Equator的位置,也就是newPos的位置,也就是说溢写线程开启后,Equator的位置立马改变,然后下一个keyValue的写入,值和元数据从Equator双向重新输入,将一个数组的内存空间用到了极致,也提高了效率
setEquator(newPos);
bufmark = bufindex = newPos;
final int serBound = 4 * kvend;
// bytes remaining before the lock must be held and limits
// checked is the minimum of three arcs: the metadata space, the
// serialization space, and the soft limit
bufferRemaining = Math.min(
// metadata max
distanceTo(bufend, newPos),
Math.min(
// serialization max
distanceTo(newPos, serBound),
// soft limit
softLimit)) - 2 * METASIZE;
}
}
} while (false);
} finally {
spillLock.unlock();
}
}
try {
// serialize key bytes into buffer
// 不需要溢写,将keyValue和元数据信息写入缓冲区
int keystart = bufindex;
// 写入key值
keySerializer.serialize(key);
if (bufindex < keystart) {
// wrapped the key; must make contiguous
bb.shiftBufferedKey();
keystart = 0;
}
// serialize value bytes into buffer
final int valstart = bufindex;
// 写入val值
valSerializer.serialize(value);
// It's possible for records to have zero length, i.e. the serializer
// will perform no writes. To ensure that the boundary conditions are
// checked and that the kvindex invariant is maintained, perform a
// zero-length write into the buffer. The logic monitoring this could be
// moved into collect, but this is cleaner and inexpensive. For now, it
// is acceptable.
bb.write(b0, 0, 0);
// the record must be marked after the preceding write, as the metadata
// for this record are not yet written
int valend = bb.markRecord();
mapOutputRecordCounter.increment(1);
mapOutputByteCounter.increment(
distanceTo(keystart, valend, bufvoid));
// 写入元数据四大参数:分区,key索引,val索引,val长度
kvmeta.put(kvindex + PARTITION, partition);
kvmeta.put(kvindex + KEYSTART, keystart);
kvmeta.put(kvindex + VALSTART, valstart);
kvmeta.put(kvindex + VALLEN, distanceTo(valstart, valend));
// 元数据输入采取逆向跳位写入
kvindex = (kvindex - NMETA + kvmeta.capacity()) % kvmeta.capacity();
} catch (MapBufferTooSmallException e) {
LOG.info("Record too large for in-memory buffer: " + e.getMessage());
spillSingleRecord(key, value, partition);
mapOutputRecordCounter.increment(1);
return;
}
}
protected class SpillThread extends Thread {
@Override
public void run() {
spillLock.lock();
spillThreadRunning = true;
try {
while (true) {
spillDone.signal();
while (!spillInProgress) {
spillReady.await();
}
try {
spillLock.unlock();
// 方法入口
sortAndSpill();
} catch (Throwable t) {
sortSpillException = t;
} finally {
spillLock.lock();
if (bufend < bufstart) {
bufvoid = kvbuffer.length;
}
kvstart = kvend;
bufstart = bufend;
spillInProgress = false;
}
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
} finally {
spillLock.unlock();
spillThreadRunning = false;
}
}
}
private void sortAndSpill() throws IOException, ClassNotFoundException,
InterruptedException {
//approximate the length of the output file to be the length of the
//buffer + header lengths for the partitions
final long size = distanceTo(bufstart, bufend, bufvoid) +
partitions * APPROX_HEADER_LENGTH;
FSDataOutputStream out = null;
try {
// create spill file
// 根据分区创建溢写文件
final SpillRecord spillRec = new SpillRecord(partitions);
final Path filename =
mapOutputFile.getSpillFileForWrite(numSpills, size);
out = rfs.create(filename);
final int mstart = kvend / NMETA;
final int mend = 1 + // kvend is a valid record
(kvstart >= kvend
? kvstart
: kvmeta.capacity() + kvstart) / NMETA;
// 排序,只对元数据信息进行排序,调整元数据在kvmeta中的顺序
// 先按照分区编号partition进行排序,然后按照key进行排序
sorter.sort(MapOutputBuffer.this, mstart, mend, reporter);
int spindex = mstart;
final IndexRecord rec = new IndexRecord();
final InMemValBytes value = new InMemValBytes();
for (int i = 0; i < partitions; ++i) {
IFile.Writer<K, V> writer = null;
try {
long segmentStart = out.getPos();
FSDataOutputStream partitionOut = CryptoUtils.wrapIfNecessary(job, out);
writer = new Writer<K, V>(job, partitionOut, keyClass, valClass, codec,
spilledRecordsCounter);
// 往磁盘写入前先判断是否设置了combiner,如果设置,则进行一次归并
if (combinerRunner == null) {
// spill directly
DataInputBuffer key = new DataInputBuffer();
// 写入相同分区的数据操作
while (spindex < mend &&
kvmeta.get(offsetFor(spindex % maxRec) + PARTITION) == i) {
final int kvoff = offsetFor(spindex % maxRec);
int keystart = kvmeta.get(kvoff + KEYSTART);
int valstart = kvmeta.get(kvoff + VALSTART);
key.reset(kvbuffer, keystart, valstart - keystart);
getVBytesForOffset(kvoff, value);
writer.append(key, value);
++spindex;
}
} else {
int spstart = spindex;
while (spindex < mend &&
kvmeta.get(offsetFor(spindex % maxRec)
+ PARTITION) == i) {
++spindex;
}
// Note: we would like to avoid the combiner if we've fewer
// than some threshold of records for a partition
if (spstart != spindex) {
combineCollector.setWriter(writer);
RawKeyValueIterator kvIter =
new MRResultIterator(spstart, spindex);
combinerRunner.combine(kvIter, combineCollector);
}
}
// close the writer
writer.close();
// record offsets
rec.startOffset = segmentStart;
rec.rawLength = writer.getRawLength() + CryptoUtils.cryptoPadding(job);
rec.partLength = writer.getCompressedLength() + CryptoUtils.cryptoPadding(job);
spillRec.putIndex(rec, i);
writer = null;
} finally {
if (null != writer) writer.close();
}
}
// 如果内存中的index文件超出了阈值,超出则将index文件写入磁盘
if (totalIndexCacheMemory >= indexCacheMemoryLimit) {
// create spill index file
Path indexFilename =
mapOutputFile.getSpillIndexFileForWrite(numSpills, partitions
* MAP_OUTPUT_INDEX_RECORD_LENGTH);
spillRec.writeToFile(indexFilename, job);
} else {
indexCacheList.add(spillRec);
totalIndexCacheMemory +=
spillRec.size() * MAP_OUTPUT_INDEX_RECORD_LENGTH;
}
LOG.info("Finished spill " + numSpills);
++numSpills;
} finally {
if (out != null) out.close();
}
}
第一级:output.close()方法中进入
public void close(TaskAttemptContext context
) throws IOException,InterruptedException {
try {
collector.flush();
} catch (ClassNotFoundException cnf) {
throw new IOException("can't find class ", cnf);
}
collector.close();
}
第二级:需要进行最后一次sortandspill把内存数据落地到磁盘
public void flush() throws IOException, ClassNotFoundException,
InterruptedException {
LOG.info("Starting flush of map output");
if (kvbuffer == null) {
LOG.info("kvbuffer is null. Skipping flush.");
return;
}
spillLock.lock();
try {
while (spillInProgress) {
reporter.progress();
spillDone.await();
}
checkSpillException();
final int kvbend = 4 * kvend;
if ((kvbend + METASIZE) % kvbuffer.length !=
equator - (equator % METASIZE)) {
// spill finished
resetSpill();
}
if (kvindex != kvend) {
kvend = (kvindex + NMETA) % kvmeta.capacity();
bufend = bufmark;
LOG.info("Spilling map output");
LOG.info("bufstart = " + bufstart + "; bufend = " + bufmark +
"; bufvoid = " + bufvoid);
LOG.info("kvstart = " + kvstart + "(" + (kvstart * 4) +
"); kvend = " + kvend + "(" + (kvend * 4) +
"); length = " + (distanceTo(kvend, kvstart,
kvmeta.capacity()) + 1) + "/" + maxRec);
sortAndSpill();
}
} catch (InterruptedException e) {
throw new IOException("Interrupted while waiting for the writer", e);
} finally {
spillLock.unlock();
}
assert !spillLock.isHeldByCurrentThread();
// shut down spill thread and wait for it to exit. Since the preceding
// ensures that it is finished with its work (and sortAndSpill did not
// throw), we elect to use an interrupt instead of setting a flag.
// Spilling simultaneously from this thread while the spill thread
// finishes its work might be both a useful way to extend this and also
// sufficient motivation for the latter approach.
try {
spillThread.interrupt();
spillThread.join();
} catch (InterruptedException e) {
throw new IOException("Spill failed", e);
}
// release sort buffer before the merge
kvbuffer = null;
// 方法入口
mergeParts();
Path outputPath = mapOutputFile.getOutputFile();
fileOutputByteCounter.increment(rfs.getFileStatus(outputPath).getLen());
}
第三级:mergeParts()
这里面用到了combiner,且设置了至少三个spill文件才进行,也可以看出在sortandspill的combiner基础上再次进行了combiner。所以combiner的输入和输出是一致的
private void mergeParts() throws IOException, InterruptedException,
ClassNotFoundException {
......
{
sortPhase.addPhases(partitions); // Divide sort phase into sub-phases
IndexRecord rec = new IndexRecord();
final SpillRecord spillRec = new SpillRecord(partitions);
for (int parts = 0; parts < partitions; parts++) {
//create the segments to be merged
List<Segment<K,V>> segmentList =
new ArrayList<Segment<K, V>>(numSpills);
for(int i = 0; i < numSpills; i++) {
IndexRecord indexRecord = indexCacheList.get(i).getIndex(parts);
Segment<K,V> s =
new Segment<K,V>(job, rfs, filename[i], indexRecord.startOffset,
indexRecord.partLength, codec, true);
segmentList.add(i, s);
if (LOG.isDebugEnabled()) {
LOG.debug("MapId=" + mapId + " Reducer=" + parts +
"Spill =" + i + "(" + indexRecord.startOffset + "," +
indexRecord.rawLength + ", " + indexRecord.partLength + ")");
}
}
int mergeFactor = job.getInt(JobContext.IO_SORT_FACTOR, 100);
// sort the segments only if there are intermediate merges
boolean sortSegments = segmentList.size() > mergeFactor;
//merge
@SuppressWarnings("unchecked")
RawKeyValueIterator kvIter = Merger.merge(job, rfs,
keyClass, valClass, codec,
segmentList, mergeFactor,
new Path(mapId.toString()),
// 内部比较器在这里发挥了作用
job.getOutputKeyComparator(), reporter, sortSegments,
null, spilledRecordsCounter, sortPhase.phase(),
TaskType.MAP);
//write merged output to disk
long segmentStart = finalOut.getPos();
FSDataOutputStream finalPartitionOut = CryptoUtils.wrapIfNecessary(job, finalOut);
Writer<K, V> writer =
new Writer<K, V>(job, finalPartitionOut, keyClass, valClass, codec,
spilledRecordsCounter);
// 如果没有配置combiner,或者一些文件小于最小触发条件,则不用combiner
if (combinerRunner == null || numSpills < minSpillsForCombine) {
Merger.writeFile(kvIter, writer, reporter, job);
} else {
combineCollector.setWriter(writer);
combinerRunner.combine(kvIter, combineCollector);
}
//close
writer.close();
sortPhase.startNextPhase();
// record offsets
rec.startOffset = segmentStart;
rec.rawLength = writer.getRawLength() + CryptoUtils.cryptoPadding(job);
rec.partLength = writer.getCompressedLength() + CryptoUtils.cryptoPadding(job);
spillRec.putIndex(rec, parts);
}
spillRec.writeToFile(finalIndexFile, job);
finalOut.close();
for(int i = 0; i < numSpills; i++) {
rfs.delete(filename[i],true);
}
}
}